Bridging the Gap between Understanding and Participation: An Experiment-Based Concept

Karl Schneider
Institute of Geography, University of Cologne, Germany
Background

• Univ. of Cologne
 – strong science program (ranks among the top universities in Germany)
 – largest teacher education facility in Germany
 – very strong Geography program

• Water:
 – cross-cutting theme for natural and social sciences as well as teaching subjects,
 – wide range of sometimes conflicting interests of different stakeholders
 – key substance in the context of education for sustainable development

• EU-WFD:
 – achieving "good status" for all bodies of water by a set deadline
 – promoting water management based on river basins
 – getting citizens involved more closely
 – ...

• Education for Sustainable Development (ESD)
 – recognized as a key component in the German national education standards for Geography
Status

• EU WFD provided a starting point for many re-naturalization and revitalization efforts of water bodies.
• Water bodies are often close to schools and provide ample opportunities for observing, monitoring and learning by doing.
• Sustainable river remediation requires participation of and stewardship by the local population.
• A change in attitudes from the perception of environmental protection as being a primary responsibility of a government body to the notion of citizens responsibility requiring participation by local stakeholders can best be facilitated by employing schools as a multiplying and broadcasting platform.
Example: Renaturalization of the Pulheimer Bach (1)

Status in 2006

Status in 2007

Green Classroom Project
Example: Renaturalization of the Pulheimer Bach (2)

Local Activity: Green Classroom Project

Regional / State Support: LUMBICUS - A mobile Lab

Continuous Support: Monitoring Devices
Opportunities arising from *river* restoration projects for ESD Pedagogy

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>Learning Objective</th>
<th>Learning Concept*</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observe river development and direct and indirect effects</td>
<td>Process understanding</td>
<td>Academic learning</td>
<td>Complex interactions and feedbacks in natural systems</td>
</tr>
<tr>
<td>Analyze upstream effects upon downstream properties and processes</td>
<td>Spatial and temporal dimensions</td>
<td>Multidimensional learning (time and space)</td>
<td>Issues of scale (large distance relationships, long term effects)</td>
</tr>
<tr>
<td>Monitor cause and effect relationships</td>
<td>Contextual dimensions</td>
<td>Multidisciplinary learning</td>
<td>Establishing a cross disciplinary learning schedule</td>
</tr>
<tr>
<td>Support community building</td>
<td>Participation and sense of ownership / responsibility</td>
<td>Emotional learning</td>
<td>Developing a benefit to the students and interest beyond the classroom</td>
</tr>
</tbody>
</table>

Opportunities arising from river restoration projects for ESD Pedagogy

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>Learning Objective</th>
<th>Learning Concept*</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diverse to developing direct and indirect effects</td>
<td>Process understanding</td>
<td>Academic leaning</td>
<td>Complex interactions and feedbacks in natural systems</td>
</tr>
<tr>
<td>Water provides intrinsic links to a wide range of subjects and disciplines:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Natural Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Physics</td>
<td>Spatial and temporal dimensions</td>
<td>Multidimensional learning in dimensions of time and space</td>
<td></td>
</tr>
<tr>
<td>– Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Biology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Geography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Social Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Economics</td>
<td>Contextual dimensions</td>
<td>Multidisciplinary Learning</td>
<td>Establishing a cross disciplinary learning schedule</td>
</tr>
<tr>
<td>– History / Cultural Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➜ Water related topics intrinsically lend themselves to cross disciplinary teaching and ESD pedagogy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some characteristics of teacher certification programs in Germany

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Drawback with respect to ESD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 – 3 disciplines / subjects are taught independently of each other</td>
<td>Solid process understanding and disciplinary methods</td>
</tr>
<tr>
<td>Study programs have modular structure</td>
<td>Clear organization, amplification of disciplinary perspective</td>
</tr>
<tr>
<td>Science classes and education classes are usually taught independently of each other</td>
<td>Solid science education, solid knowledge of education theories and methods</td>
</tr>
<tr>
<td>ESD is linked to the national education standards in Geography</td>
<td>Clear mandate to teach ESD</td>
</tr>
</tbody>
</table>
Example Research Concept

Integrative Modeling
Physical Geography

Watershed Models with stakeholder interaction

Field Experiments / Process interaction

ESD: From Process-understanding to Participation

Surveys / participating observations

Process Models

Participation

Lab Experiments / Individual Processes

International Teacher/Student exchange

Diagnosis and Evaluation

Experiments

Physics

Diagnosis

Educational Science

SUSTAINING THE BLUE PLANET
GLOBAL WATER EDUCATION CONFERENCE

Project WET
Water Education for Teachers

UNO HABITAT
FOR A BETTER URBAN FUTURE

Abbott
A Promise for Life
Integration across disciplines

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Observation</th>
<th>Conceptualization</th>
<th>Description</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics / Chemistry</td>
<td>Observation</td>
<td>Conceptualization</td>
<td>Process description</td>
<td>Validation</td>
</tr>
<tr>
<td></td>
<td>$V_x \equiv \frac{Q}{A_x} = -K_{hx} \cdot \frac{dh}{dx}$</td>
<td></td>
<td></td>
<td>Reproducibility in Lab</td>
</tr>
<tr>
<td>Geography</td>
<td>Observation</td>
<td>Conceptualization</td>
<td>Model</td>
<td>Validation</td>
</tr>
<tr>
<td>ESD pedagogy</td>
<td>Surveys of teachers and students, participating observations</td>
<td>Analysis of surveys</td>
<td>Class protocols</td>
<td>Evaluation of learning success by comparison with reference</td>
</tr>
<tr>
<td>Research Approach</td>
<td>Traditional / Reference</td>
<td>ESD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University</td>
<td>Target group: students pursuing teacher certification</td>
<td>Teacher certification courses with specific BNE training classes (interdisciplinary, problem driven, new methods)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td>Disciplinary seminars and labs</td>
<td>Cross-disciplinary seminars and labs, combined lab-/ and field work</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compare argumentation skills, evaluate participation indicators of different student groups (traditional vs. ESD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local / Regional Scale</td>
<td>Target group: pupils</td>
<td>Emotional learning based on hand on projects with many cross links between science curriculum and relevance to own environment. e.g. schools at Pulheimer Bach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schools</td>
<td>Academic learning with limited links to real world problems and subjective involvement</td>
<td>Experiment-oriented, cross disciplinary practical in schools aiming at developing ESD skills and experience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td>Traditional school labs and practical</td>
<td>Compare argumentation skills, evaluate participation indicators and indicators of ability to contribute to environm. protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Scale</td>
<td>Target group: pupils</td>
<td>Establish exchange programs with partner universities abroad, specifically for teacher ed. programs, e.g. BVIEER / Poona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University / School</td>
<td>student exchange programs (very seldom in the context of teacher education)</td>
<td>Compare argumentation skills, evaluate participation indicators of student groups with / without access to international cooperation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spatial Scaling Approach

Regional

Watershed

Comparative Analysis and Evaluation

Transfer

Model Building

Comparison

Lab, School environment, Educational path Pulheimer Bach

Pune / Indien

Local

International

Spatial
Scaling
Approach
ESD Research Objectives

• Develop cross disciplinary programs with local relevance
 – Integration through corresponding experiments (field and lab experiments) and use of same outdoor location
 – Identify and employ cross disciplinary concepts though model analogies (e.g. Ohm’s law)

• Analyze the relevance of outdoor observation, tangible and physical models for academic learning as well as emotional learning
 – Does the approach of integrating models and real world experience improve emotional learning and support the understanding of models as well as their credibility?
 – How do students and pupils perceive the limits of (physical/conceptual) models?

• Analyze disciplinary and cross-disciplinary learning success
 – Is there a motivational benefit from using a cross disciplinary common anchor (e.g. a river renaturalization project which provides a starting point for classroom research in different subjects)?
 – Is there a change in understanding and relevance by transferring similar concepts across disciplines?
 – What are the methodological challenges in developing and implementing integrative ESD programs?

• Analyze the willingness to participate
 – Does the local experience reflect on the willingness of the pupils/students/teachers/parents to participate?
 – Does the understanding of spatial relationships analyzed at local rivers affect the understanding of regional to global interactions?
 – Does the change in understanding spatial and temporal relationships reflect upon behavior?
Conclusion

Traditional teachers education programs in Germany are discipline oriented and do have limited cross disciplinary aspects and cross disciplinary methodological approaches

- New toolset for ESD oriented approaches in teacher education programs are needed
- Universities and practitioners / schools must jointly develop new approaches for teacher training programs

Understanding scaling issues (temporal and spatial) is of key importance to ESD

- River restoration projects provide many opportunities to analyze spatial and temporal dependencies which may provide a suitable empirical basis to scale up to regional and global issues

Gap between understanding basic processes and complex systems

- Moving from physical / tangible model to numerical and integrated models may provide a means to better understand and analyze complex systems behavior, to build confidence in models and to better understand and convey options of human management
- Suitable and sufficiently simple models must be developed from the existing scientific models

Sustainable river restoration requires local participation

- Manifold opportunities for water education and ESD
- Emotional learning by hands on experience supports the development of a sense of relevance
- Better integration of Science – Education – Application is needed. Teacher education and schools are a key facilitator to support this integration